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1. DERIVATION OF EQUATION 4.1

We derive the posterior expectation ofqi given the observed log-ratiomi. qi is modelled

asexp(α) andei asN(0, σ2) whereα andσ2 are estimated empirically from the data.

We drop thei subscript for convenience.

E(q | m) = 0 · P (q = 0) +E(q | q > 0,m) · P (q > 0)

The joint distribution ofq ande is given by

fq,e|q>0(q, e) = α exp(−αq)
1

σ
φ
( e

σ

)

Since the Jacobian of the transformation is1 the joint distribution ofq andm is

simply

fq,m|q>0(q,m) = α exp(−αq)
1

σ
φ

(

q −m

σ

)

The marginal distribution ofm is given by

fm|q>0(m) =

∫ ∞

0

fq,m|q>0(q,m)dq
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Substitutingw = (q −m)/σ we have

fm|q>0(m) =
∫∞
−m/σ

α exp(−α(σw +m))Φ (w) dw

= α exp(−αm)

∫ ∞

−m/σ

exp(−ασw)
1√
2π

exp

(

−w2

2

)

dw

= α exp(−αm) exp

(

α2σ2

2

)
∫ ∞

−m/σ

1√
2π

exp

(

−(w + σα)2

2

)

dw

By substitutingz = w + σα we obtain the right hand side:

α exp(−αm) exp

(

α2σ2

2

)
∫ ∞

−m/σ+σα

1√
2π

exp

(

−z2

2

)

dz

= α exp

(

α2σ2

2
− αm

)

Φ

(

m− ασ2

σ

)

We can then write the posterior distribution ofq given the datam,

fq|q>0,m(q | m) =
fq,m|q>0(q,m)

fm|q>0(m)

=
α exp(−αq) 1

σ
φ( q−m

σ
)

α exp
(

α2σ2

2
− αm

)

Φ
(

m−ασ2

σ

)

=
1√
2π

exp(− 1

2σ2 (q − (m− ασ2)2)

Φ(m−ασ2

σ
)

=
1

σ
φ( q−a

σ
)

Φ( a
σ
)

wherea = m−ασ2. By substitutingz = (q− a)/σ we obtain the posterior expecta-

tion, conditional onq > 0:
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E(q | q > 0,m) =
1

Φ( a
σ
)

∫ ∞

0

q

σ
φ

(

q − a

σ

)

dq

=
1

Φ( a
σ
)

∫ ∞

−a/σ

(σz + a)φ(z)dz

=
1

Φ( a
σ
)
a

∫ ∞

−a/σ

φ(z)dz +
1

Φ( a
σ
)
σ

∫ ∞

−a/σ

zφ(z)dz

=
1

Φ( a
σ
)

[

aΦ
(a

σ

)

+ σφ
(a

σ

)]

= a+ σ
φ( a

σ
)

Φ( a
σ
)

Thus

E(q | m) =

(

a+ σ
φ( a

σ
)

Φ( a
σ
)

)

· P (q > 0)

The parametersα andσ2 are estimated as in the RMA convolution model, but with

GC-stratification and with the restriction that the normal component be centered at0.

p0 = 1 − P (qi > 0) is estimated by the fraction of probes for whichmi < 0. We

assessed the sensitivity of percentage methylation estimates top0 estimation. Varyingp0

estimates across the range observed in the 25 samples (7%-17%) resulted in a maximum

percentage methylation change of 4% suggesting robustnessto p0 estimation error.

2. MICROARRAY DATA QUALITY ASSESSMENT

Data quality metrics provide a useful tool for identifying outlier probes or entire arrays

that should be considered for exclusion from the analysis. Methylation levels are esti-
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mated by comparing the treated (enriched) channel to the untreated (total input) channel.

In the case of the McrBC approach for instance, methylation levels can be estimated

from the amount of depletion in the treated channel comparedto the untreated channel.

As a result, the range of measurable methylation (the dynamic range) is determined in

large part by the quality of the untreated channel signal. Since the untreated channel

measures total DNA, all probes are expected to record a high signal. Similar to the ap-

proach of Thompsonand others (2008) we assess the quality of the untreated channel

signal by comparing these probes to the signal from the background probes that measure

cross-hybridization and scanner optical noise. We define a probe’s quality score as its

percentile rank among those background probes with the sameGC-content. Probes with

consistently low scores (<75% in this paper, for example) can be flagged for exclusion

from the analysis. Similarly, the array quality score, defined as the mean probe score, is

a useful metric for identifying outlier arrays to be removed.

A heatmap plot of probe intensity by physical location is a second useful tool for

identifying hybridization problems. Since probes are typically located randomly across

an array, we do not expect any spatial bias in signal strength. Both channels should

show uniform signal intensity over the physical array. Thisis particularly useful for the

enriched channel where we cannot compare probes to the background level since low

intensity is indicative of methylation.

3. BACKGROUND SIGNAL REMOVAL

Background signal is removed using a modified version of the Robust Multichip Aver-

age (RMA) convolution model (Irizarryand others, 2003). The RMA model assumes

that the observed intensity is the sum of normally distributed background noise and the
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true signal, modeled as an exponential. We modify the RMA hyperparameter estimation

procedure by taking advantage of anti-genomic background probes, available on most

current array designs, to more accurately estimate the background component. In addi-

tion, we use GC-stratification to account for the dependence on background signal level

with GC-content.

While removing background signal levels has the benefit of reducing bias this comes

at the expense of increased variance (Scharpfand others, 2007). The increase in variance

can potentially lead to an inflated false positive rate when identifying methylated or

differentially methylated regions in downstream analysis, but this is largely mitigated by

taking variance estimates into account.

4. CPG DENSITY / FRAGMENT LENGTH BIAS

Enrichment of methylated DNA by restriction enzyme based approaches has been re-

ported to be dependent on the digested fragment length (Thompsonand others, 2008).

This bias is largely believed to be the result of PCR amplification whose efficiency is

size-dependent. Thompsonand others (2008) present a normalization scheme to adjust

for this bias. A second contributing factor to the dependence may be a true relationship

between methylation levels and fragment length. This is reasonable given that restric-

tion fragment length is dependent on CpG density which is known to be a determinant of

methylation levels. To isolate the effect of these factors we generated a fully methylated

sample by in-vitro treatment with Sss1 methylase. We examined the effect of fragment

length in the context of the CHARM assay by plotting the median enrichment log-ratio

by fragment length, as estimated using McrBC recognition sites. While the relationship

is similar to that described previously for the samples withnormal methylation levels
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(Figure 1a), it does not hold for a fully methylated sample (Figure 1b). This suggests

that, in the context of this assay, the methylation log-ratio need not be corrected for

fragment length biases. Further evidence for lack of bias isprovided by comparing the

methylation log-ratios to independent sequencing verification data, where we observe

no relationship between error and fragment length (Figure 2).

5.
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Fig. 1. The x-axis shows restriction fragment length and the y-axis shows the median enrichment log-ratio for (a) the

tissue samples with normal methylation levels, and b) a fully methylated sample.

Fig. 2. DNA fragment length and CpG density do not bias the methylation estimate. The data represents the discrep-

ancy between microarray percentage methylation estimates and an independent bisulfite sequencing verification data

set.
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Fig. 3. The distribution of unmethylated control probe log-ratios is centered at0 following pre-processing.
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